Sunday, June 3, 2012

fiber optics

fiber optics

)A technology that uses glass (or plastic) threads (fibers) to transmit data. A fiber optic cable consists of a bundle of glass threads, each of which is capable of transmitting messages modulated onto light waves.
Fiber optics has several advantages over traditional metal communications lines:
  • Fiber optic cables have a much greater bandwidth than metal cables. This means that they can carry more data.
    • Fiber optic cables are less susceptible than metal cables to interference.
  • Fiber optic cables are much thinner and lighter than metal wires.
    • Data can be transmitted digitally (the natural form for computer data) rather than analogically.
    The main disadvantage of fiber optics is that the cables are expensive to install. In addition, they are more fragile than wire and are difficult to splice.
    Fiber optics is a particularly popular technology for local-area networks. In addition, telephone companies are steadily replacing traditional telephone lines with fiber optic cables. In the future, almost all communications will employ fiber optics





                        



    optical fiber

    Optical fiber (or "fiber optic") refers to the medium and the technology associated with the transmission of information as light pulses along a glass or plastic strand or fiber. Optical fiber carries much more information than conventional copper wire and is in general not subject to electromagnetic interference and the need to retransmit signals. Most telephone company long-distance lines are now made of optical fiber. Transmission over an optical fiber cable requires repeaters at distance intervals. The glass fiber requires more protection within an outer cable than copper. For these reasons and because the installation of any new cabling is labor-intensive, few communities have installed optical fiber cables from the phone company's branch office to local customers (known as local loops). A type of fiber known as single mode fiber is used for longer distances; multimode fiber is used for shorter distances.
    Learn more about Optical Networks
    Optical-electrical network convergence primer: Optical-electrical network convergence will collapse network layers, reduce costs and cut management complexity for next-generation IP services.
    Enabling technologies for 100G DWDM network transmission: As 100G DWDM optical network transport takes hold to speed optical channel rates, telecoms have to make hard choices to avoid slowing market development, as happened with 40G DWDM.
    A short history of 100G DWDM optical network transport development: Review the history behind the interest in 100G DWDM optical network transport to increase optical channel rates and accommodate traffic growth as operators deploy 40G DWDM systems.
    100G DWDM optical networking transport: The telecom industry prepares: Telecoms want to quickly develop 100G DWDM. Optical networking expert Ray Mota examines forces driving first-generation adoption and what will meet network operators' requirements.
    The physics of fiber in optical networks: "Optical Fibers," Chapter 5, from The Cable and Telecommunications Handbook looks at the evolution of optical fibers and the impact of convergence on optical networks.

    Chapter 2 : Part 2

    Q 23. Simplify the function using Karnaugh map and implement using minimum Lumber of logic gates.
                               F =  (2, 9, 10, 12, 13) + D(1, 5, 14)
    What are the limitations of Karnaugh map?

    Ans.                  F =  (2, 9, 10, 12, 13) + D(1, 5, 14)
    K-map:
                              
    Implementation using minimum number of logic gates can be obtained from the minimized output of the given function.
    Implementation is as shown:
       

                

    Limitations of K-map:
    For large number of variables i e more than six variables the K-map becomes cumbersome It is difficult to solve the output of K-map having 7 8 and more variables as it covers more space and need large time for calculations Also, the K-map for 6 variables is possible and for more variables Q-M method or tabular minimization method is used



    Q 24 Minimize the following four variable functions using sum-of-products
    Karnaugh Maps
    f(a, b, c, d) = f1(a, b, c, d)   f2(a, b, c, d)
    where f1 = a’ d + bc + b’ c’ d’ +  (1, 2, 11, 13, 14, 15)
    and f2 =  (0, 2, 4, 8, 9, 10, 14) d (1, 7, 13, 15)

    Ans.
               
            
                                     



    Q 25. Minimize the following function by Quine Mccluskey method and
    list all prime implicants of essential prime implicants. Is the minimum SOP unique, if not all the minimal solutions for the functions?
    F (a,b,c,d,e,f) =  (0,2,4,7,8,16,24,32,36,40,48) + d (5,18,22,23,54,56)

    Ans. Arrange the minterms according to no. of l’s

    Group the minterms into group of two

    Group of minterms into group of four.

    Group of minterms in Group of eight

    Table of prime impilcants:

    Thus, output

                          



    Q 26. Design a combinational circuit which has four inputs and one output. The output is equal to 1 when
    (i) All the inputs equal to 1 or
    (ii) None of the inputs equal to 1.
    (iii) An odd number of inputs are equal to 1.
    Draw the logic circuit using minimum number of NAND gates.
    Ans.
    Truth Table
                                        
    Implementation using NAND gates:



    Q 27. Obtain the set of prime implicants for  (0,1,3,4,6,7,8,9, 14,15) using the binary designations of mm-terms using Q — M method.

    Ans. Using Q-M method  (0,1,3,4,6,7,8,9, 14,15)
    Step 1
                                   
    Step 2
                                 
    Step 3
                     
    Step 4
                          
    Step 5
                                 


    Q 28. Obtain the set of prime implicants for  (0, 1, 6, 7, 8, 9, 13, 14, 15) using the binary designations of minterms using Q-M method.

    Ans.
    Step 1:
                    
    Step 2:
                        
    Step 3:
                      
    Step 4:
                      
    Step 5:
                    

    Chapter 2 : Minimization of Logic Function (Part 1)

    Remember These:



    1. Logic gates most commonly used are AND, OR. NOT. NAND, NOR, XOR. XNOR.
    2. NAND and NOR are universal gates.
    3. Output of AND gate is low even if one input is low (Y = A.B) where A and B are inputs and Y is the output.
    4. Output of OR gate is high if any one input is high (Y = A + B)
    5. In NOT gate, when a high is applied as input, a low appears at output and vice versa.
    6. NAND gate has output high when any one of its input is low.
    7. The output of NOR gate is high when any input is low.
    8. Output of XOR gate is high if one an only one input is high.
    9. The output of XNOR gate is high when all inputs are high.
    10. NAND and NOR can be used to realize any gate.
    11. SOP involves sum of given product terms and these terms are known as minterms (m).
    12. POS involves product of given sum terms of these are known as maxterms (M).
    13. A karnaugh map is simply a graphical method for representing a boolean function. It is used to simplify a logic equation or to convert a truth table to its logic circuit.
    14. Types at K-map are 2 variable, 3 variable, 4 variable, 5 variable and 6 variable.
    15.  = M formula is used for the calculation of total number of squares in a K-map. Here, n=number of variables and M = number of squares.
    16. For representing SOP form for K map: enter 1 for each minterm and 0 otherwise.
    17. To minimize the boolean expression using K-map, pair, Quad and octet are formed in increasing priority.
    18. Q-M method or Quine Mc-Clusky method or Tabular minimization method is used for large number of variables if increases from 6 variable i.e. for 7, 8, 9 or oven 10 variables. K-map method fails for large number of variables.
    19. Incompletely specified functions are don’t care conditions. In these cases output level in rot defined, it can be ‘high’ or low’ i.e. ‘1’ or ‘0’.
    20. Don’t care conditions are marked by ‘d’ or x’ or 



    Q.1 What is K-map? Why we need K-maps? Give the various types of K-map.

    Ans. K-map i.e. Karnaugh map is simply a graphical method for representing a Boolean
    fraction. The Karnaugh map is a systematic method for simplify and manipulating Boolean expression. It is used to simplify a logic expression or to convert a truth table to its corresponding logic circuit. It is used for the minimization of switching functions but upto ‘six’ variables. For more than ‘six’ variable it becomes complex or cubersome.

    The K-map for n-Boolean variable switching function consists of squares. Here square represents the normal or standard term i.e. one minterm or maxterm.

    Need of K-maps: We need K-map for representing Boolean function through graphical method. Because K-map simplify and manipulates a Boolean expression. So to solve or simplify a Boolean expression, we use K-map. K-map can be used for problems involving any number of input variables (upto six variables) which is not easily solve by Boolean Algebra. Types of K-map :

    Types of K-maps commonly used are
    1. Two variable K-map
    2. Three variable K-map
    3. Four variable K-map
    4. Five variable K-map
    5. Six variable K-map

    1 Two variable K-map
     = M formula is used where, n = Number of variables and M = Number of squares.

    2. Three Variable K-map:

    3. Four Variable K-map:
    Formula used is   = M
    Where, n = number of variables, M = Number Of squares
                  n = 4
              
    So, ‘4’ variable K-map consists of ‘16’ squares.

    4. Five and Six Variable K-maps: Five variable K-map has  squares and five
    variables are A, B, C, D and E. It is shown in figure.

    Grouping of 2 variable K-map.


    Q 2. Solve following using K-map and Boolean algebra:

    Solution.



                     
    Using boolean,
                        
    So           Y = B, is the simplified expression.

                                        
    Using boolean,
                         

                                        
     It is the simplified expression.
    Grouping of 3 variable K-map


    Q 3 Solve following using K-map and boolean algebra:

    Solution.
                 
                                 
    Using boolean,
                         

    Using boolean,
    Minimized output of K-map is V = C

    Using boolean,
                         
    Grouping of 4 variable K-map.


    Q 4 Solve the following using K-map and verify by using boolean algebra:
    (i) F (A, B, C, D) =  (3, 4, 5,7, 9, 13, 14, 15)

    Solution
                      
    (ii) F (A, B, C, D) = (0, 1, 2,3, 6, 8, 9, 10, 11, 12, 13)

    Solution.
                     

    (iii) F (A, B, C, D) =   (0, 1, 4, 5, 3, 2, 11, 10)

    Solution
                    


    Q 5. Solve the following using k-map:
    f (A, B, C, D) =   (0,2, 3, 8, 11, 12) + d (1,9, 14)

    Ans. K-map is as shown:
                             


    Q 6. Find the maxterms for the expression 

    Ans.
                                 
    The max terms are given by:
                                 


    Q 7 Construct the truth table for F = 

    Ans Truth table for F =  
    This is the output of an XOR gate.
    Truth Table :
             


    Q 8 Convert the given expression in canonical SOP form Y = AC + AB + BC

    Ans.Y=AC +AB+ BC
    The canonical SOP form is given by:
                                                      



    Q 9. Two minterms can be adjacent only if they differ by ……
    Ans. Single bit.
    (i) Evaluate the expressions
    (i)A+1;
    (ii) A + A;

    Ans. (i) A + 1 = 1
    It comes under OR laws.
    Oring an input with 1, always results in a high output.
                                                                                   
                                        A + 1 = 1

    Case I, Let A = 0                                       0+ 1 = 1
                                                                                      

    Case II, Let A = 1                               1 + 1 = 2
                                                                                        

    Hence, A + 1 = 1

    (ii) A + A = A

    Case I, Let A = 0                                  0 + 0 = 0
                                                                                

    Case II, Let A = 1                                     1 + 1 = 1
                                                                                   

    Hence,  A + A  =  A


    Q 10. In a function of six variables the total maximum number of terms which the
    expression can have will be ……

    Ans. A function having 6 variables, then the total maximum number of terms will be given by:
                                     


    Q 11. Explain the difference between Boolean operations OR and XOR. Use truth
    tables to described how these operations differ.

    Ans.
                    


    Q 12. Realize and OR and NOT using NOR gates.

    Ans. (i) AND gate using NOR gates:
                                               
    (ii) OR gate using NOR gates:
                                                        
    (iii) NOR gate using NOR gate only:
                                                                      


    Q 13. Realize X-OR function using NOR gates only.

    Ans.  Realization of X-OR using NOR gate only
                               


    Q14. A four-variable function is given as f (A, B, C, D) =  (0, 2, 3, 4, 5, 7, 8, 13, 15). Use a K-map to minimize the function.

    Ans. f (A B, C D) =  (0, 2,3, 4 5, 7, 8, 13, 15)



    Q. 15. Simplify the expression 2. =AB + AC + ABC (AB + C). Implement using
     minimum number of NAND gates.

    Ans Z = AB + AC + ABC (AB + C)
              = AB + AC + ABC. AB + ABCC
              = AB + AC + ABC + ABC
              = AB + AC + ABC
              =AB(1 + C) + AC
              = AB  +  AC
    Implementation using minimum number & NAND gates:
                          
                       



    Q 16. A four-variable function is given as f (A, B, C, 0) = HM (0, 3, 4, 5, 6, 7, 11, 13,
    15). Use a K-map to minimize the function.

    Ans.
                       
                       


    Q 17. (i) Make a K-map for the function:
                                        
    (ii) Express f in standard SOP form.
    (iii) Minimize it and realize the minimized expression using NAND gates only.

    Ans. (i)
                                   
    (ii) Express f in standard SOP form
            

    Circuit diagram:
                                 


    Q 18. Realize OR, AND, NOT, NOR gates using NAND gates only.

    Ans. (i) OR gate using NAND only:
                              

    (ii) AND gate using NAND only:
                                

    (iii) NOT gate using NAND only.:
                                            

    (iv) NOR gate using NAND only:
               



    Q 19. Minimize the function using K-map.
                     f (A, B, C, D) =   (0, 1, 2, 3, 5, 7, 8, 9, 11,14)

    Ans.
                                  


    Q 20. Given below a four variable Karnaugh map with four entities. Write the corresponding Boolean expression.
                                                
    Ans. The corresponding boolean expression is
    a’b’c’d + a’ b c’ d + abc’ d + ab’c’ d
    Also, the minimised output is  c’d.



    Q 21.Obtain the minimal SOP expression for
      (0, 1, 2, 4, 6, 9. 11, 12, 13) and implement it in NAND logic.

    Ans. f (A, B, C, D) =    (0, 1, 2, 4, 6, 9. 11, 12, 13)
    Firstly K-map
                                
    Circuit diagram using NAND only
                          


    Q 22. Obtain the minimal POS expression for   (0, 1, 2, 4, 5, 6, 9, 11, 12, 13, 14, 15) and implement it in NOR logic.

    Ans. Firstly, fill given o’s in K-map, to get the expression in POS form.
                                     
    Implementation using NOR gates